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Abstract—Today, artificial intelligence(AI) has become an irre-
sistible historical trend. Many AI-assisted learning frameworks
have also emerged, such as Tensorflow, Keras, Pytorch, and Caffe.
These tools greatly simplify the cost of AI learning and research.
However, while they bring convenience, people’s understanding
of some underlying knowledge of artificial intelligence is very
insufficient. Therefore, this paper will build a convolutional
neural network framework support on CPU and GPU without
the aid of any machine learning framework. And I use the
framework to build convolutional neural network to solve MNIST
and CIFAR-10. After about mintues of training on CPU, 98%
and 50% accuracy were achieved on MNIST and CIFAR test set
respectively. After about one minute of training on GPU, 98%
and 70% accuracy were achieved on MNIST and CIFAR test set
respectively.

I. INTRODUCTION

In recent years, the development of artificial intelligence
in the field of science and technology is also obvious to all.
From the controversy caused by the development of driverless
cars to AlphaGo’s victory [3] over the top Go player, artificial
intelligence has attracted enough attention. Machine learning,
a branch of artificial intelligence, has attracted wide attention,
and deep learning, a branch of machine learning, has become
a research hotspot in recent years.

Artificial intelligence has had its decline. But after a brief
dip, there was a boom. So what exactly does AI rely on
to turn things around? That’s rapid iterations of hardware
and software. Of course, the most important thing is its
excellent problem solving ability. But imagine that without the
computing power of current hardware and the iterative updates
in software, there would be no AI today.

The software accelerator of AI is numerous learning frame-
works, like TensorFlow [1], Pytorch [10], Keras [6], Caffe
[5] and so on. They can help us build neural networks
like building blocks, and can realize forward propagation,
automatic differentiation and back propagation. In addition,
they also do a lot of automatic processing of the details
of neural network construction and training, such as what
activation function should be applied, how to initialize the
parameters, how to dynamically set the learning rate, what
update algorithm is applied to the gradient of back propagation
and so on. Although this brings great convenience to the study
and research of neural network, it also makes people lack of
understanding of the underlying knowledge of neural network.

This paper makes the following contributions:

• I (use C++ language) build and train a convolutional
neural network1 to recognize handwritten digits without
calling any machine learning library functions. About
98% accuracy was achieved in the test set (10,000 test
images in MNIST) after a training round of about 7
minutes (60,000 training images in MNIST).

• I (use C++ language) build a convolutional neural net-
work framework2 support on CPU. And I use the frame-
work to solve MNIST and CIFAR-10. 98% and 50%
accuracy were achieved on MNIST and CIFAR test set
respectively.

• I (use C++ language) build a convolution neural network
framework3 support on GPU. I implement the forward
and backward process of each layer by calling CUDNN
or launch kernels which I wrote. And I use the framwork
to solve MNIST and CIFAR-10. 98% and 70% accuracy
were achieved on MNIST and CIFAR test set respecively.
I believe with fine-tuning the result will be better.

• The variation rule of data dimension in forward propaga-
tion is explained in detail.The method of calculating and
updating the gradient of each layer in back propagation is
introduced in detail. Some other details of neural network
training, such as parameter initialization and learning rate
selection, are also introduced.

The rest of the paper is organized as follows: Section
II introduces the background and history about AI and its
accelerators. Section III elaborates the process of building and
training Convolutional Neural Network. Section IV introduces
the convolutional network framework support on CPU. Section
V gives a introduction about framework support on GPU. Sec-
tion VI compares the convolutional neural network constructed
in this paper with Pytorch.

II. BACKGROUND

A. History of artificial intelligence

Artificial intelligence has been formally proposed since the
1950s and 1960s. In 1950, a senior student named Marvin
Minsky and his classmate Dunn Edmond built the world’s first
neural network computer, and this computer also showed the
beginning of computing. Coincidentally, in 1950, Alan Turing
also came up with a remarkable idea called the Turing Test [2],

1This work was publicly at https://github.com/gty111/ConvNN/tree/main
2This work was publicly at https://github.com/gty111/ConvNN/tree/cpu
3This work was publicly at https://github.com/gty111/ConvNN/tree/cudnn

1



Fig. 1. GTX580

in which he assumed that a computer would be an intelligent
machine if it could converse with a human being without being
identified as a machine. During the course of the year Alan
had boldly predicted the feasibility of intelligent machines.
In 1956, at a conference, the term artificial intelligence was
formally introduced by computer expert John McCarthy. Later,
this behavior was considered to be the official birth of artificial
intelligence.

During this period of ten years, computers were widely
used in mathematics and natural languages, mainly solving
algebra and geometry problems. This situation has made many
scholars see the machine to artificial intelligence development
confidence. Even more, several scholars at the time believed
that within twenty years machines would be able to do
everything humans could. In the 1970s, artificial intelligence
entered its first trough, because researchers’ estimation of
the difficulty of the project was wrong in the research on
artificial intelligence, which not only led to the failure of the
cooperation plan, but also cast a shadow on the development of
artificial intelligence. At the same time, the public opinion is
also slowly pressure, which is the loss of most research funds.
At that time, artificial intelligence faced three technical dilem-
mas: First, the performance of the computer could not meet the
requirements, which would cause many early programs could
not be used in the field of artificial intelligence; Second, the
problem is relatively complex, the early artificial intelligence
is aimed at specific problems, because the specific problems
are usually few and the complexity is very low, but as long
as the difficulty of the problem increases, the program will be
overwhelmed; Third, the amount of data was not enough. In
those days, there were no large enough databases to support
deep learning of programs, which would make it impossible
for machines to read enough data to be intelligent.

In 2006, neural network expert Hinton proposed neural
network deep learning algorithm [9], which greatly improved
the capability of neural network and challenged the support
vector machine. At the same time, it opened the wave of deep
learning in academia and industry.

B. The rise of the GPU

Nvidia was founded in 1993. At first, GPUs were mainly
used for graphics display adapters. However, with the de-
velopment of artificial intelligence, Nvidia released the first
computational graphics card, the GTX580 which AlexNet
[8] is trained on. AlexNet is a great success in artifical

intelligence. This success came from the efficient use of GPUs,
ReLUs, a new regularization technique called dropout, and
techniques to generate more training examples by deforming
the existing ones. This success has brought about a revolution
in computer vision; ConvNets are now the dominant approach
for almost all recognition and detection tasks and approach
human performance on some tasks.

The emergence of computable GPUs have led to a boom
in machine learning. The booming development of machine
learning feeds back into the GPU field. So machine learn-
ing and GPU are mutually reinforcing. And Nvidia’s great
strategic vision is doomed to its success. Today GPU is not
only brilliant in the field of artificial intelligence, but also
indispensable for people’s entertainment life. It’s even more
important than CPU, and Nvidia’s market cap proves it.

C. The current development of artificial intelligence

I’m sure you’ve all heard of some of the current AI hits,
such as NovelAI and chatGPT.

1) NovelAI: The NovelAI uses Diffusion Anime image
generation. Stable Diffusion works by generating an image
based on your text prompt, starting with only noise, and
gradually enhancing the image until there is no noise left at
all. The AI connects your text to images, generating a new
composition every single time you prompt it.

2) chatGPT: ChatGPT is a model which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,
challenge incorrect premises, and reject inappropriate requests.
ChatGPT is a sibling model to InstructGPT, which is trained
to follow an instruction in a prompt and provide a detailed re-
sponse. They trained this model using Reinforcement Learning
from Human Feedback (RLHF), using the same methods as
InstructGPT, but with slight differences in the data collection
setup. They trained an initial model using supervised fine-
tuning: human AI trainers provided conversations in which
they played both sides—the user and an AI assistant. They
gave the trainers access to model-written suggestions to help
them compose their responses. ChatGPT is fine-tuned from a
model in the GPT-3.5 series, which finished training in early
2022.

D. CUDNN

CUDNN stands for the NVIDIA CUDA® Deep Neural
Network library. It is a GPU-accelerated library of primitives
for deep neural networks. CUDNN provides highly tuned
implementations for standard routines such as forward and
backward convolution, pooling, normalization, and activation
layers. The software stack with cuDNN is shown at Fig.2.
As Fig.3 shows, many AI framework relys on cuDNN to
accelerate on GPU. In this paper, I also use CUDNN to
accelerate training on GPU.
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Fig. 2. Software stack with cuDNN

Fig. 3. Framework relied on cuDNN

III. THE DETAIL OF BUILDING AND TRAINING
CONVOLUTIONAL NEURAL NETWORK

I use MNIST (Fig.4) data set to be fed to the network.
The overview of network’s structure is shown in Fig.5. The
meaning of symbol is shown in Tab.IV.

A. MNIST

MNIST data set comes from the American National Institute
of Standards and Technology (NIST), which is a smaller
version of NIST. The training set is composed of handwritten
numbers from 250 different people. Fifty percent were high
school students, 50 percent were from the Census Bureau
staff, and the test set was a similar percentage of handwritten
numerical data.

All the integers in the files are stored in the MSB first
(high endian) format used by most non-Intel processors. Users
of Intel processors and other low-endian machines must flip
the bytes of the header.There are 4 files in MNIST which

Fig. 4. Part of MNIST

shown in Tab.I. Label file format is shown in Tab.II. The labels
values are 0 to 9. Image file format is shown in Tab.III. Pixels
are organized row-wise. Pixel values are 0 to 255. 0 means
background (white), 255 means foreground (black).

TABLE I
MNIST FILES

File name description
train-images-idx3-ubyte training set images
train-labels-idx1-ubyte training set labels
t10k-images-idx3-ubyte test set images
t10k-labels-idx1-ubyte test set labels

TABLE II
MNIST TRAINING SET LABEL FILE (TRAIN-LABELS-IDX1-UBYTE)

offset type value description
0000 32 bit integer 0x800000801(2049) magic number (MSB first)
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
......

xxxx unsigned byte ?? label

TABLE III
MNIST TRAINING SET IMAGE FILE (TRAIN-IMAGES-IDX3-UBYTE)

offset type value description
0000 32 bit integer 0x800000803(2051) magic number (MSB first)
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
......

xxxx unsigned byte ?? pixel

TABLE IV
SYMBOL TABLE

NAME description
fcw weight of full connection layer
fcb bias of full connection layer

convw weight of convolution layer
convb bias of convolution layer

B. CIFAR-10
CIFAR-10 [7] is a color image data set that is closer to

universal objects. CIFAR-10 is a small data set collated by
Hinton students Alex Krizhevsky and Ilya Sutskever for the
identification of pervasive objects. A total of 10 categories
of RGB color pictures are included: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. The size
of each picture is 3x32×32, and there are 6,000 images for
each category. There are a total of 50,000 training pictures
and 10,000 test pictures in the data set. Compared with the
grayscale image of MNIST, CIFAR-10 is a 3-channel color
RGB image, and it is a real object in the real world. It is not
only noisy, but also has different proportions and features of
objects.
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Fig. 5. Network Structure on MNIST

C. Forward Propagation

1) INPUT : At first, the input of image will be normalized
which means

INPUT(i,j,k) = (INPUT(i,j,k) −mean)/std (1)

where mean equals the mean of INPUT and std equals the
standard deviation of INPUT .

2) INPUT
conv1−→ A: There are some default rules in

convolution layer(with no padding).
IN.shape(0) = CONVW.shape(1)

OUT.shape(0) = CONVW.shape(0)

OUT.shape(1) = IN.shape(1) − CONVW.shape(2) + 1

OUT.shape(2) = IN.shape(2) − CONVW.shape(2) + 1

CONV B.shape(0) = CONVW.shape(0)

(2)

where shape means the dimension of that tensor and index
starts from 0.(Eg. in this paper IN.shape(0)=1 IN.shape(1)=28
IN.shape(2)=28)

A(i) = convb1(i) +
∑
j

INPUT(j) ⊗ convw1(i,j) (3)

where ⊗ means operation of convolution. Mind that A(i) is
a tensor whose shape is (26,26), INPUT(j) is a tensor whose
shape is (28,28) and convw1(i,j) is a tensor whose shape is
(3,3).

3) A
relu−→ B:

B = RELU(A) (4)

where RELU is a common function shown in Fig.6.
4) B

conv2−→ C:

C(i) = convb2(i) +
∑
j

B(j) ⊗ convw2(i,j) (5)

Fig. 6. RELU activation function

5) C
relu−→ D:

D = RELU(C) (6)

6) D
meanpool−→ E:

E(i,j,k) = (

j∗2+1∑
m=j∗2

k∗2+1∑
n=k∗2

D(i,m,n))/4 (7)

7) E
flattern−→ F :

F(i∗12∗12+j∗12+k) = E(i,j,k) (8)

8) F
fc1−→ G:

G(i) = fcb1(i) +
∑
j

F(j) ∗ fcw1(j,i) (9)

There are some default rules in full connection layer.

fcw.shape(1) = fcb.shape(0)

IN.shape(0) = fcw.shape(0)

OUT.shape(0) = fcw.shape(1)

(10)

9) G
relu−→ H:

H = RELU(G) (11)

10) H
fc2−→ I:

I(i) = fcb2(i) +
∑
j

H(j) ∗ fcw2(j,i) (12)

11) I
relu−→ J:

J = RELU(I) (13)

12) J
logSoftmax−→ OUTPUT :

OUTPUT(i) = loge(
eJ(i)∑
k e

J(k)
) (14)

where e means natural logarithm.
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D. Backward propagation

1) ∆J:

∆J(i) =

1− e
J(i)∑

k e
J(k)

i = label

− e
J(i)∑

k e
J(k)

i ̸= label
(15)

2) ∆I:

∆I(i) =

{
∆J(i) I(i) > 0

0 I(i) ≤ 0
(16)

3) ∆fcw2:

∆fcw2(i,j) = H(i) ∗∆I(j) (17)

4) ∆fcb2:
∆fcb2(i) = ∆I(i) (18)

5) ∆H:

∆Hi =
∑
j

∆I(j) ∗ fcw2(i,j) (19)

6) ∆G:

∆G(i) =

{
∆H(i) G(i) > 0

0 G(i) ≤ 0
(20)

7) ∆fcw1:

∆fcw1(i,j) = F(i) ∗∆G(j) (21)

8) ∆fcb1:
∆fcb1(i) = ∆G(i) (22)

9) ∆F:

∆F(i) =
∑
j

∆G(j) ∗ fcw1(i,j) (23)

10) ∆E:

∆E(i,j,k) = ∆F(i∗12∗12+j∗12+k) (24)

11) ∆D:

∆D(i,j,k) = ∆E(i,j/2,k/2)/4 (25)

12) ∆C:

∆C(i,j,k) =

{
∆D(i,j,k) C(i,j,k) > 0

0 C(i,j,k) ≤ 0
(26)

13) ∆convw2:

∆convw2(i,j) = B(j) ⊗∆C(i) (27)

14) ∆convb2:

∆convb2(i) =
∑
j

∑
k

∆C(i,j,k) (28)

15) ∆B:

∆B(i) =
∑
j

PAD(∆C(j))⊗ROT (convw2(j,i)) (29)

where PAD operation is shown in Fig.8 and ROT operation is
shown in Fig.7.

Fig. 7. ROT operation

Fig. 8. PAD operation

16) ∆A:

∆A(i,j,k) =

{
∆B(i,j,k) A(i,j,k) > 0

0 A(i,j,k) ≤ 0
(30)

17) ∆convw1:

∆convw1(i,j) = INPUT(j) ⊗∆A(i) (31)

18) ∆convb1:

∆convb1(i) =
∑
j

∑
k

A(i,j,k) (32)

E. Other details about ConvNN

The loss of built ConvNN is defined as follows

Loss = OUTPUT(label) (33)

Due to the LogSoftmax operation, OUTPUT will all be
negative. And the closer the loss is to zero, the better result
is. The model’s parameters are updated in a way as follows

Pi+1 = Pi +∆Pi ∗ lr (34)

where lr means learning rate of the model. In this paper,
learning rate is set to 5e−3. And the model is trained with
fixed learning rate. The model parameters were initialized with
a normal distribution with a mean of 0 and a standard deviation
of 0.1.

F. Evaluation

From Fig.9 and Fig.10, we can see the convergence of the
model is fast at the beginning, and then gradually becomes
slower. So dynamically updating learning rate is future work.
After 10000 images’ training, the model can achieve 96%
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Fig. 9. Loss while training on MNIST

Fig. 10. Accuracy rate on test set while training on MNIST

accuracy. This shows that the model does not need a lot of
training data to achieve good results.

IV. FRAMEWORK SUPPORT ON CPU

Why I call that a framework? Because you can set up a
convolution network with simple codes through framework
like Fig.11. And you can train the network by just calling
nn.forward() and nn.backward(). I abstract each Layer in the
network into a subclass of Layer. They implement their own
forward and backward methods, respectively. In this case,
the NN class only needs to call the forward and backward
methods at each layer. And you don’t need to give full
detail information about each layer but the basic information.
Because it will automatically calculates the dimensions of this
layer based on the input from the previous layer and given
information. So you can build convolution network just like
using other AI framework.

To validate the correctness and ease of use, I use it to solve
MNIST and achieve 98% accuracy just like before. And I
also use it to train CIFAR-10 which is far harder to train than
MNIST. I try to build a complicated network like VGG-16 to
solve CIFAR. It turns out that it’s very slow and I give up and

Fig. 11. The code used to build NN on cifar-10

Fig. 12. The model used to train CIFAR-10

train a simple network. The network structure used to train
CIFAR-10 is shown at Fig.12 . The result is shown at Fig.14
and Fig.13. Although the result is not very good, but it verify
correctness and ease of the use to build CNN.

V. FRAMEWORK SUPPORT ON GPU
To solve the problem of slow training time, I implement

the GPU version of framework by calling CUDNN or kernels
which I wrote. And the training time drops greatly. But after
that I met many challenges about solving CIFAR-10.

A. Gradient explosion

After I build network like VGG-16, no matter how you
adjust the learning rate, the training will soon be saturated.
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TABLE V
COMPARISON WITH PYTORCH

metric this paper(CPU) this paper(GPU) Pytorch(CPU) Pytorch(GPU)
training time about 7min about 14s about 1min about 18s

accuracy rate on test set about 98% about 98% about 98% about 98%

Fig. 13. Loss while training on CIFAR-10 on CPU

Fig. 14. Accuracy rate on test set while training on CIFAR-10 on CPU

Then I found that the gradient is very large. To solve gradient
explosion, I use batch normalization [4] which is a great
solution. The operation of batch normalization is as follows.

y =
x− E[x]√
V ar[x] + ϵ

∗ γ + β

where y is the output, x is the input, E[x] is the expectation of
x, Var[x] is the variance of x, γ and β arelearnable parameters.

B. Overfitting

After adding batch normalization to the network, I found
that it shows great overfitting when using VGG-16. I tried to
add momentum when updating gradient and augmenting the
input image by randomly cropping or horizon flipping. But it
turns out that it did’t work well either. In the end, I simplify the

Fig. 15. Accuracy on train and test set training on GPU

Fig. 16. The network to solve CIFAR-10 training on GPU

network structure and achieve 70% accuracy which is shown
at Fig.15. I believe and know this is not the best result so it
is left to the future work.

VI. RELATED WORK

Pytorch gives an example to build convolution neural net-
work on MNIST. The structure of that network is a little
different from this paper which is the number of kernel of
convolution. Tab.V gives a comparison with Pytorch. And
the biggest difference is in training time. For gpu version,
they both achive similar accuracy at similar time. But for
CPU, Pytorch uses less time. I guess Pytorch use openmp
to accelerate the training on CPU. This is left to the future
work.
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VII. CONCLUSION

This paper introduces and achieves the construction of a
convolutional neural network, the process of forward propa-
gation and back propagation in detail. This paper also explore
the possibility of building convolutional network framework
support on CPU and GPU. The GPU version can greatly
reduce the training time. I also use the framework to solve
MNIST and CIFAR-10 and achieve 98% and 70% accuracy
respectively.
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F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

8


