

â

F

ကြား

at the

JUNE 23-27, 2024 MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

\$MILE : LLC-based Shared Memory Expansion to Improve GPU Thread Level Parallelism

Tianyu Guo, Xuanteng Huang, Kan Wu, Xianwei Zhang, Nong Xiao

Sun Yat-sen University

- Background
- Motivation
- Design
- Evaluation
- Summary

GPU Architecture

- A GPU is composed of multiple streaming multiprocessors (SMs)
- Each SM contains private L1 data cache and shared memory (L1D/SMEM)
- All the SMs share a L2 cache

GPU Evolution

- Improvement of GPU resources is out of proportion
- Since the Ampere architecture, L1D/SMEM is insufficient while LLC is abundant

- Background
- Motivation
- Design
- Evaluation
- Summary

Higher SMEM Usage Causes Lower Occupancy

• Applications are exhibiting low occupancy (2% - 46%)

Occupancy is inversely proportional to the SMEM

• Higher SMEM usage causes less CTAs to be launched and thus lower TLP

SMEM Limits Performance

- Doubling SMEM can improve performance up to 2.8 imes
- SMEM can be very critical, and enlarging SMEM can be promising to improve GPU TLP and performance

Extended SMEM Supplied by Idle L2 Cache

- On-chip memory is expensive
 - Extended shared memory can be borrowed from idle L2 cache
- Huge L2 cache is in idle state

metric	bandwidth (%)	space (%)	working set(MB)
Average	8.3	71.8	4.3

Space is defined as percentage of touched cache lines

• L2 cache can be partitioned to be extended SMEM

- Background
- Motivation
- Design
- Evaluation
- Summary

Architecture of \$MILE

- L2 cache is partitioned to extend SMEM (L2S)
- Extra CTAs (eCTAs) are launched to each SM
- SMEM accesses of eCTAs are redirected to L2S

INAPING THE MERITARIA OF ELECTRONICS

RPG — Runtime Profiling Guided Method

- Different number of eCTAs influence the performance of apps
- RPG is proposed to determine the best quota of eCTAs
- SMs are grouped (C1-C4) to profile

- SMs under different groups commit CTAs in varied speed
- Adjust #eCTAs to the group which commits CTAs "Fastest"

Workflow of RPG

- RPG contains two phases
 - > profiling: collects the number of CTAs committed by different groups
 - > alignment: adjusts the number of concurrently running eCTAs

- Background
- Motivation
- Design
- Evaluation
- Summary

GPU Configurations, Applications and SOTA

- Simulation platforms: Accel-Sim and AccelWattch to model an NVIDIA Ampere-like GPU
- Applications: involve SMEM usages and TLP are limited by SMEM
- SOTA: OSM using off-chip device memory to enlarge SMEM

Parameter	Value	#App	benchmark
#SM	80	3	Rodinia
Shared Memory Cache / SM	100KB	6	Cutlass
L1 cache / SM	28KB	1	N/A
L2 (or LLC)	30MB		

Performance and Energy

- Some apps are SMEM-hungry, like FC, FG and SPG
- OSM performs poorly in SMEM-insensitive apps, like 2DE and NQU

- Background
- Motivation
- Design
- Evaluation
- Summary

Summary

- Motivation: enlarged SMEM helps boost GPU TLP, and GPUs are of huge LLC
- Design: partition LLC to expand SMEM to launch extra CTAs
 Runtime profiling
- Result: proposed design efficiently raises TLP
 - ➢ Speedup by 14%, energy reduction by 9%

থ্য

â

والم

Ħ

સ્થિ

Q

JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA