Machine Learning: Inference and Serving

gLLM: Global Balanced Pipeline Parallelism Systems for Distributed LLMs Serving with Token Throttling

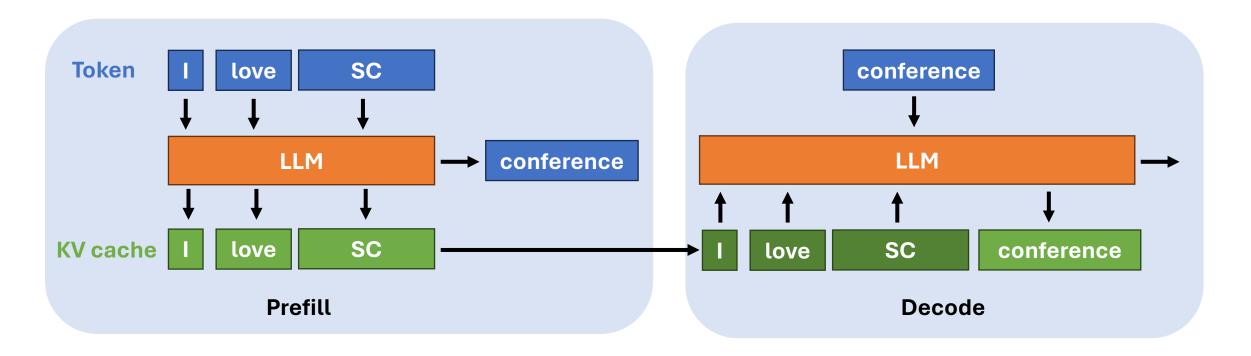
<u>Tianyu Guo</u>, Xianwei Zhang, Jiangsu Du, Zhiguang Chen, Nong Xiao, Yutong Lu

Email: guoty9@mail2.sysu.edu.cn

Time: Thursday, 20 November 2025 11:37am-12:00pm CST

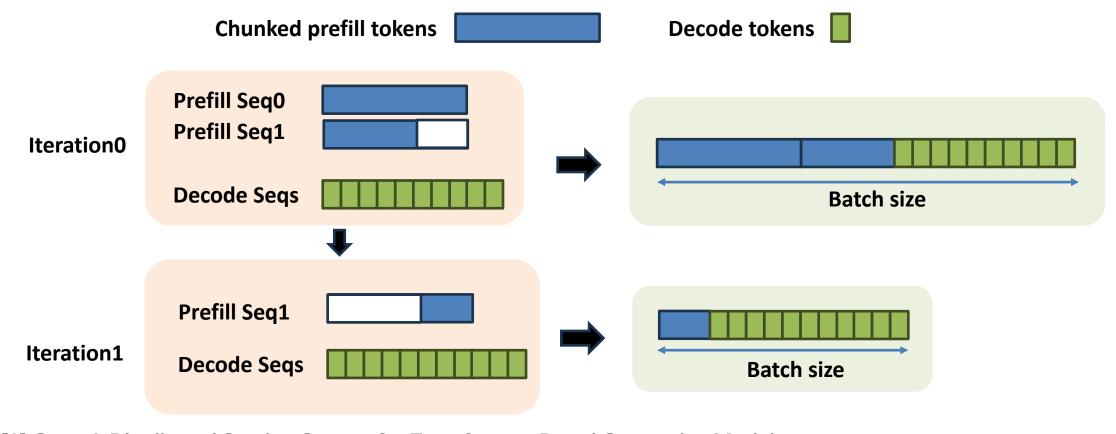
Background: LLM Inference and KV Cache

- LLM Inference: Autoregressive Decoding with KV cache
 - Decoding: Next token prediction based on previous tokens
 - Autoregressive: Generate token one by one
 - KV cache: Intermediate data kept for decoding



Background: Scheduling Policies

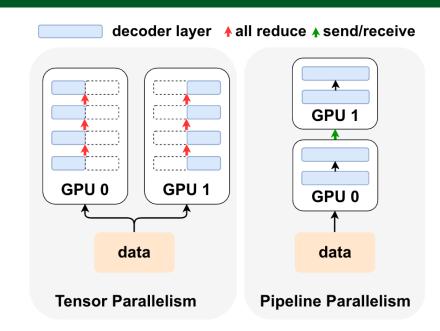
- Continuous batching¹: Iteration-level request scheduling
- Sarathi-Serve²: Batch prefill tokens at **chunked** granularity with decoding tokens

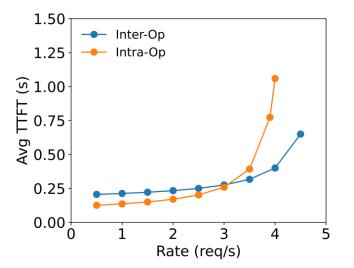


- [1] Orca: A Distributed Serving System for Transformer-Based Generative Models
- [2] Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve

Background: Parallelism Strategies and Distributed Serving

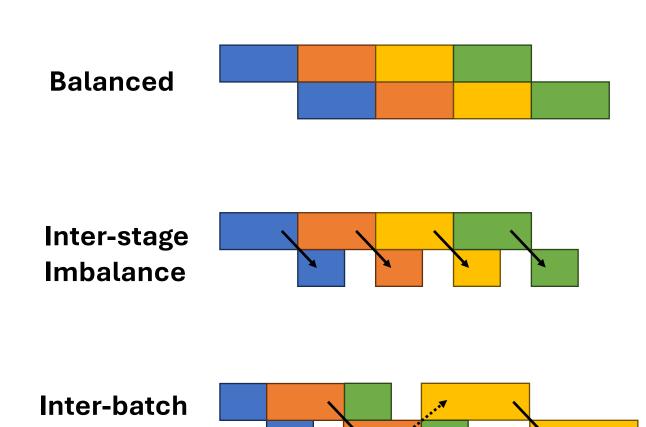
- Pipeline Parallelism: Inter-layer Model Partition
 - Lightweight communication demand (send/receive)
 - Throughput-oriented
- Tensor Parallelism: Intra-layer Model Partition
 - Heavy communication demand (all reduce)
 - Latency-oriented
- Distributed serving requires high inter-node bandwidth demands
 - Cross-node setups often adopt a pipeline parallel deployment





Motivation: Pipeline Bubbles

- Pipeline Bubbles
 - Inter-stage imbalance: Uneven computation distribution across pipeline stages
 - Inter-batch imbalance: Variation in computation requirements across different micro-batches
- Dependency
 - Inter-stage dependency ————

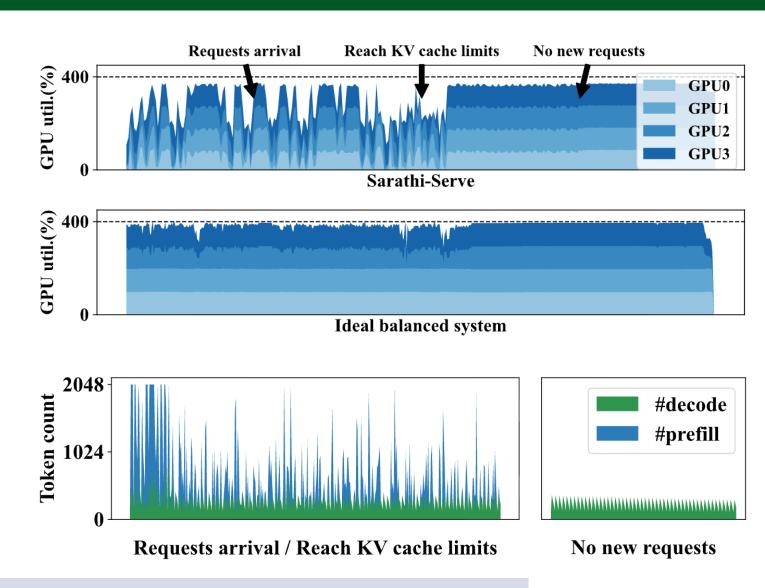


Balanced computation between micro-batches is required

Imbalance

Motivation: Fluctuation in Scheduled Token Count

- GPU is under-utilized caused by unbalanced scheduling
 - Requests arrival / Reach KV
 cache limits: Performance
 drops due to large fluctuations
 in prefill and decode tokens
 - No new requests: Minor
 performance degradation due
 to fluctuations in decode
 token count



Smooth token scheduling ensures balanced computation

Motivation: Scheduling Demands

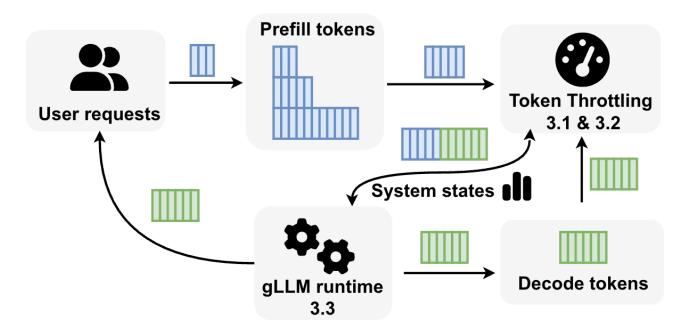
- Pipeline bubbles caused by fluctuation in scheduled token count
 - Balanced scheduling: the runtime of adjacent micro batch is similar

- Prefill and decode stages have distinct characteristics
 - Decoupled scheduling (run together): the numbers of scheduled prefill tokens and decode tokens do not interfere with each other

- Scheduling demands change over time
 - Dynamic scheduling: adjust prefill rate according to system state

Design: gLLM——Global Balanced Pipeline Parallelism System

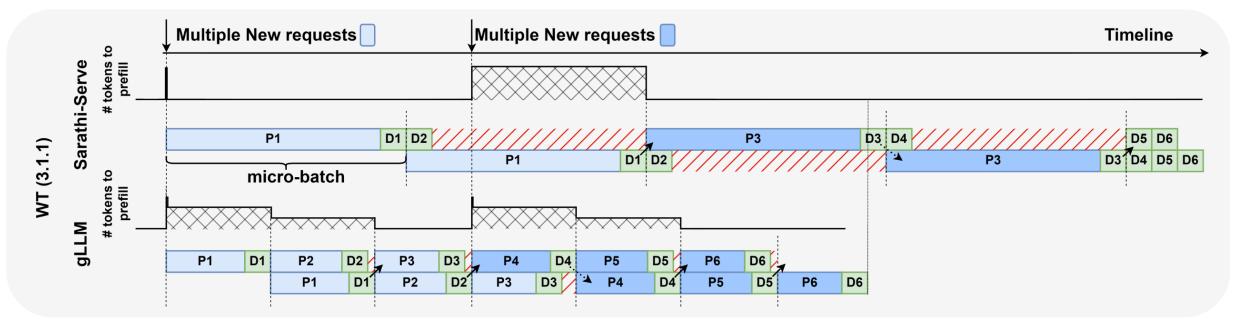
- Token Throttling to achieve balanced computation
 - Decoupled scheduling for prefill and decode phase
 - Dynamically adjust scheduled token number
- gLLM runtime
 - Runtime tailored for pipeline parallelism



Design: Prefill Token Throttling——WT

- Throttling by Tokens Count Awaiting Prefill
 - Scheduled prefill tokens may fluctuate due to insufficient pending tokens
 - We compute scheduled prefill tokens (#P) from waiting tokens (#WP) and the number of iterations (#T) to process all tokens waiting for prefill

$$\#P = \min(\max(\frac{\#WP}{\#T}, \#MinP), \#MaxP)$$
 $\#MinP/\#MaxP : Minimum/Maximum scheduled prefill token count$

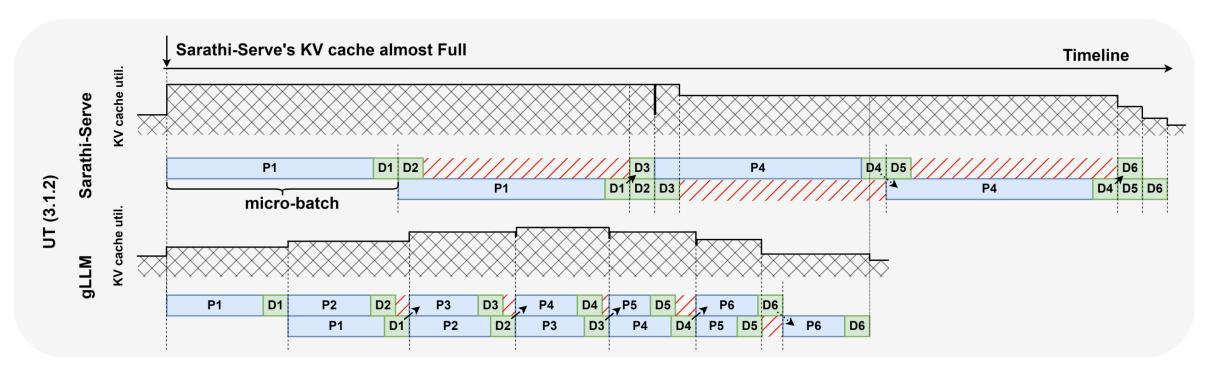


Design: Prefill Token Throttling——UT

- Throttling by KV Cache Utilization Rate
 - Scheduled prefill tokens may also fluctuate due to insufficient KV cache capacity
 - We compute #P from KV cache free rate (# $KV_{free} \in [0,1]$)

$$#P = \max(\#MaxP \times KV_{free}, \#MinP)$$

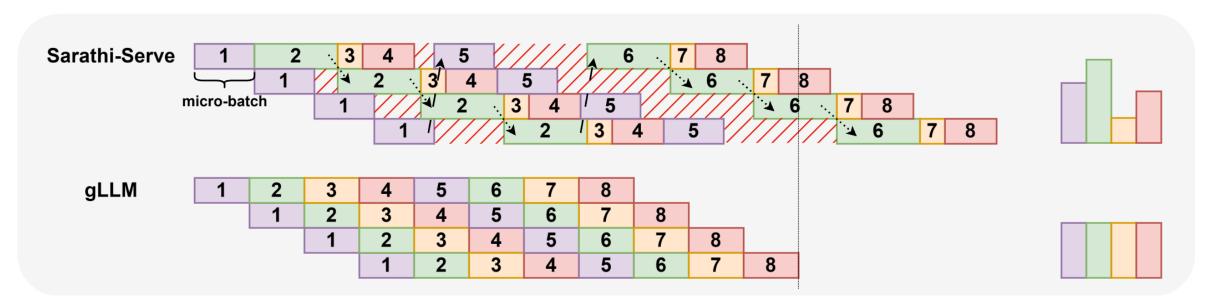
#MinP/ #MaxP : Minimum/Maximum scheduled prefill token count



Design: Decode Token Throttling

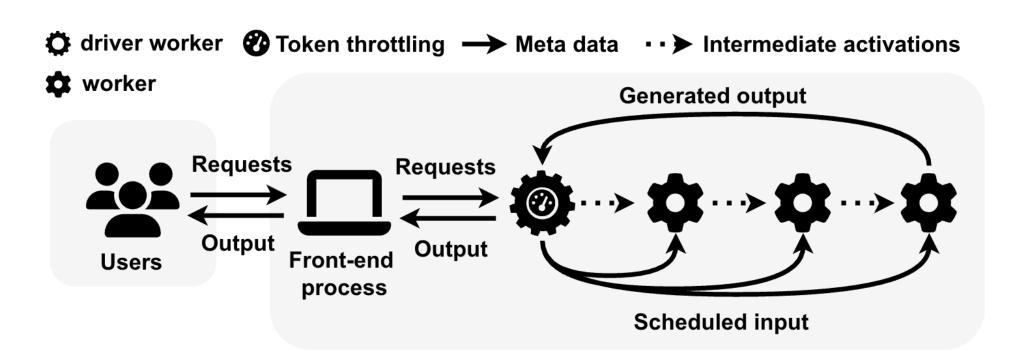
- Throttling by **Tokens Count Under Decode**
 - Scheduled decode token count (#D) depends on the number of active decode requests (#RD) and the pipeline stages ($\#PP_{depth}$)

$$\#D = \frac{\#RD}{\#PP_{depth}}$$



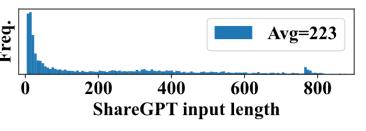
Design: gLLM Runtime

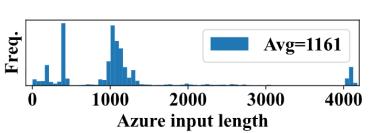
- gLLM runtime: An asynchronous runtime designed for pipeline parallelism
 - Non-blocking pipeline operations
 - Decoupled frontend-backend processing
 - Preemptive metadata scheduling

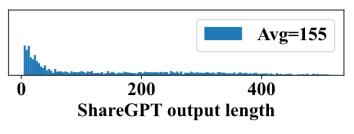


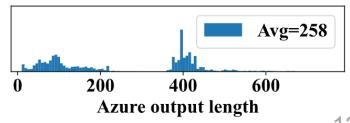
Evaluation: Experimental Setup

- Models: Qwen2.5 (14/32B) and Llama3.1(100B)
- Schemes:
 - vLLM (v0.8.1 V1) with pipeline parallelism
 - SGLang (v0.4.3.post2) with tensor parallelism
 - gLLM with pipeline parallelism
- Metrics
 - Time to first token (TTFT)
 - Time per output token (TPOT)
 - End to end latency (E2EL)
 - Throughput
- Workloads: ShareGPT and Azure



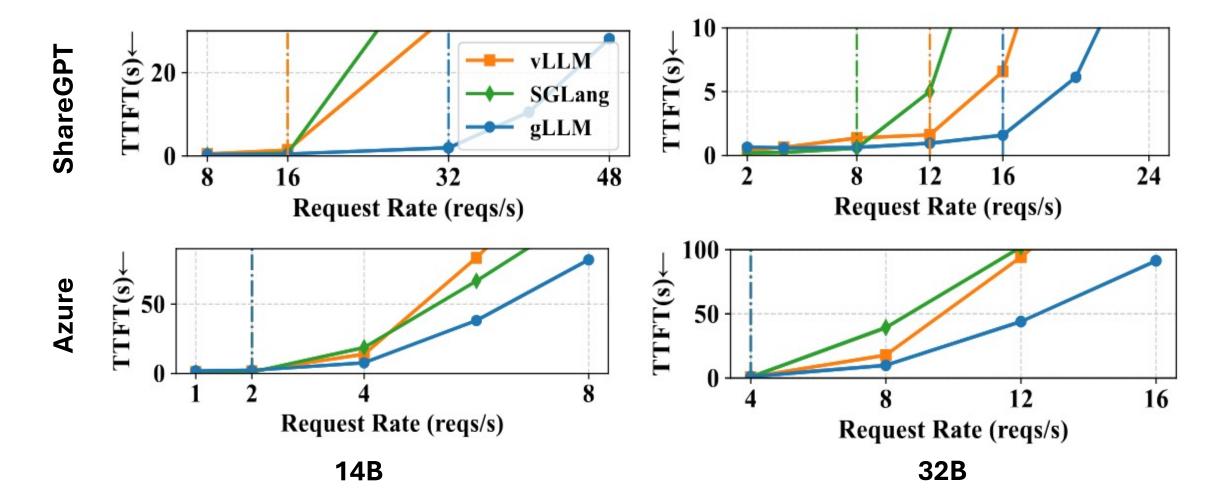






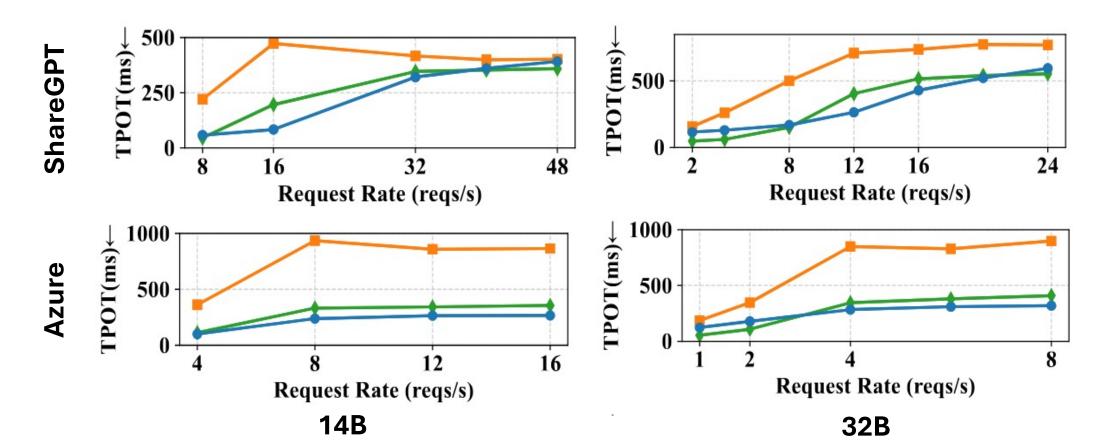
Evaluation: Latency and Throughput —— TTFT

- TTFT will rise significantly at some point due to requests queuing
 - gLLM reaches its turning point at 1-2× higher request rates



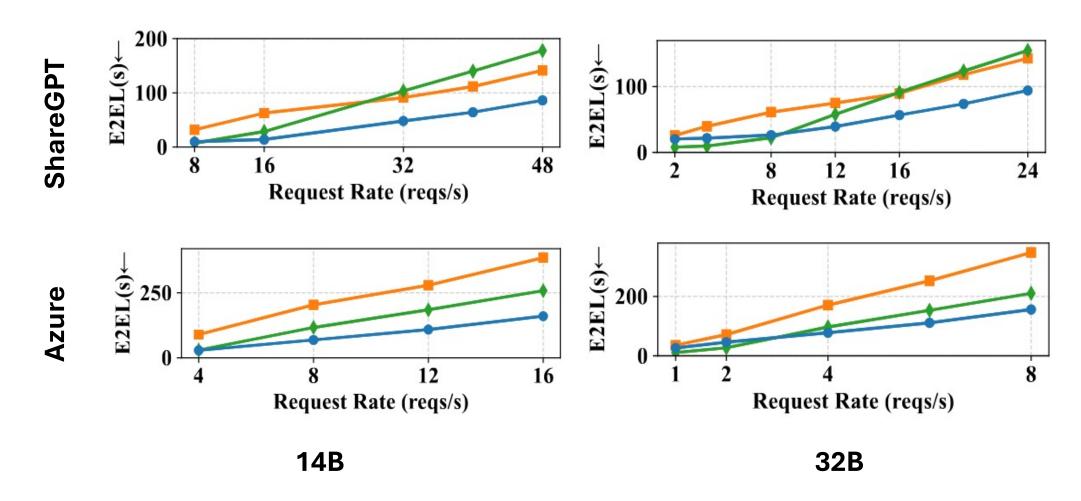
Evaluation: Latency and Throughput —— TPOT

- Patch size reaches its maximum
 - gLLM maintains an average 2%-10% lower TPOT in most cases



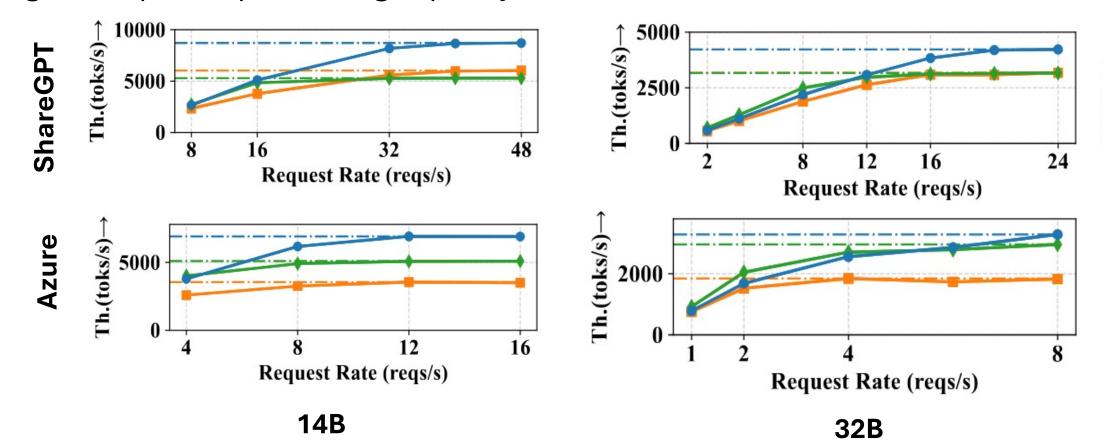
Evaluation: Latency and Throughput —— E2EL

- E2EL shows an approximately linear increase trend
 - gLLM achieves 0.53-0.92× lower slope



Evaluation: Latency and Throughput —— Throughput

- Throughput gradually plateaus as request rates increase. This plateau represents the system's maximum processing capacity
 - gLLM improves processing capacity 29%-150%



Conclusion

- In LLM serving, **pipeline bubbles** arise from computation imbalance caused by insufficient prefill tokens or limited KV cache
- We propose **Token Throttling**, which dynamically adjusts prefill and decode batch size based on real-time feedback
- We present gLLM, a distributed serving system that employs Token Throttling
- On representative LLM workloads, gLLM boosts throughput by 11%–398% over state-of-the-art systems with lower latency

Machine Learning: Inference and Serving

https://github.com/gty111/gLLM

gLLM: Global Balanced Pipeline Parallelism Systems for Distributed LLMs Serving with Token Throttling

Tianyu Guo, Xianwei Zhang, Jiangsu Du, Zhiguang Chen,

Nong Xiao, Yutong Lu

Email: guoty9@mail2.sysu.edu.cn

Tianyu's Homepage

Thank You!

