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ABSTRACT

Graphics Processing Units (GPUs) are essential for general-purpose

applications and are commonly leveraging multi-level caches to

alleviate memory access pressure. However, the default cache man-

agement may lose opportunities for optimal performance in dif-

ferent applications. Although existing cache bypassing techniques

tend to address this challenge, these methods predominantly con-

centrate on single-level cache, thus restricting their potential for

further enhancements. To mitigate this issue, we propose Mpache,
a novel software-based mechanism designed to bypass multi-level

caches based on the characterization of load instructions. Mpache
constructs an interaction graph and analyzes the cooperation and

contention among instructions. Then, the profiling data of bypass-

ing effectiveness guides Mpache to select the appropriate cache

levels to bypass for each instruction. Finally, the design is inte-

grated into the compiler to enable automatic bypassing for existing

workloads. Evaluations on off-the-shelf GPUs show that Mpache
achieves an average 1.15× speedup over the default cache policy,

and effectively outperforms prior arts.
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1 INTRODUCTION

Graphics Processing Units (GPUs) show remarkably high compu-

tational throughput owing to their thousands of threads, coupled

with efficient thread-switching techniques to hide memory request

latency. To further alleviate the bottleneck of slow global memory

operations, modern GPUs consistently expand cache size to exploit

data reuse at different degrees of popularity [1]. By default, requests

fetch data from global memory and store retrieved data in all cache

levels. Tasks with regular access patterns demonstrably benefit from
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this approach as contiguous elements are cached together within

a single memory access. In contrast, workloads characterized by

non-contiguous memory accesses exhibit minimal performance

improvement [2, 3] due to the limited data locality. Caching all

the data in this scenario leads to cache pollution, wasting valuable

capacity on unnecessary data.

Cache bypassing has been proved as a promising strategy to

mitigate cache contention caused by scattered memory accesses

[4–6]. This approach strategically bypasses the cache for these

accesses, preventing storing infrequently used data and thus im-

proving overall cache utilization. However, the effectiveness of

cache bypassing varies depending on two key factors. Firstly, the

memory instructions exhibit varied bypassing affinity, indicating

the varying efficiency and benefits of bypassing across different

cache levels (on-chip L0/L1 or off-chip L2). Bypassing a specific

level may yield significant speedup, but can also negate the perfor-

mance, hinging on the access pattern. Furthermore, the interaction

between load requests from diverse code regions and threads is

crucial in determining bypass affinity.

To bypass cache in a controlled manner, a plethora of designs

have been proposed to dynamically detect cache misses from mem-

ory requests [6–12] and apply thread throttling to restrict multiple

threads from simultaneously loading data into cache [13–15]. While

offering fine-grained control, most designs concentrate on archi-

tectural modifications and thus pose a challenge for implementing

on readily available GPUs. Software-managed approaches, on the

contrary, analyze data locality at the instruction level with a par-

ticular focus on code property [16–22], thereby offering strong

compatibility for off-the-shelf GPUs. However, these strategies

focus exclusively on the single-level cache, especially the L1 cache,

and fail to coordinate across multiple cache levels. This may result

in overlooking the bypass potential for different cache hierarchies.

Aiming at bypassingmulti-level caches on off-the-shelf GPUs, we

propose Mpache, a novel system to analyze the bypassing affinity for

global loads based on their interactions. Mpache first constructs an
interaction graph and divides global loads intomultiple groups. This

graph helps identify the potential data reuse or cache competition

patterns inter- and intra-groups, which can be summarized into

two types of interactions: cooperation and contention. Then via

profiling, Mpache acquires the multi-level cache bypassing affinity
for each load and its corresponding group. Next, by synergizing the

two interactions, Mpache formulates a bypass strategy catering to
the whole group for cooperation consideration and each load within

a group for contention concern. Finally, combining the instruction

interactions, bypassing affinities, and a calculated bypassing score,

Mpache strategically selects the optimal bypass decision for each
load. The design is further seamlessly integrated into the compiler

to automate the entire process without any manual effort.

In summary, this paper makes the following contributions:
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• We identify the bypassing affinity to different cache levels

and highlight the lack of control in multi-level cache bypass-

ing in existing designs.

• We propose Mpache to analyze two interactions and bypass
efficiency across various cache levels.

• We implement the design on top of the compiler to automat-

ically select the suitable strategy.

• Evaluations demonstrate that Mpache achieves a 1.15× per-

formance speedup over default policy.

2 BACKGROUND AND MOTIVATION

2.1 GPU Memory Hierarchy
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Figure 1: A general purpose GPU memory hierarchy. Arrows

indicate data-flow paths.

Figure 1 depicts the GPU memory hierarchy along with possible

data flow paths among these components, grounded in the recent

AMD RDNA design1 [23]. From the architectural aspects, a GPU

consists of several compute units (CUs), also referred to as streaming

multiprocessors (SMs). An assembly of CUs is grouped as shader

arrays (SA), and a bundle of SAs is further accommodated by shader

engines (SE). In terms of thememory hierarchy, each CU is equipped

with private registers and L0 cache. An SA shares access to an L1

cache and all CUs of the GPU utilize a globally shared L2 cache,

which is directly connected to the main DRAM memory.

2.2 Bypassing Software Support

To effectively manage the cache space for divergent workloads,

software-controlled mechanisms have been proposed, with repre-

sentative examples of residency control [24] and flexible policy tun-

ing [25]. Recent AMD RDNA architectures introduce three optional

annotation bits (SLC, GLC, and DLC) within memory instructions to

affect data coherency and cache access behavior [23]. Correspond-

ingly, the LLVM compiler infrastructure [25] provides Intermediate

Representation (IR) features volatile and nontemporal to manip-
ulate the annotation bits for the AMDGPU backend.

Table 1 lists the correspondence between the LLVM IR features

and the annotation bits. Setting the GLC, DLC, and SLC bits adopt

Miss-Evict, Miss-Evict, and Stream policies for different cache levels

1The paper elaborates primarily using AMD GPU architectures and terms, which are

generally applicable to other vendors as well.

Table 1: The relationships between LLVM IR instructions

features and RDNA2 ISAmachine bits and the corresponding

cache behaviors for global loads instructions.
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respectively. This effectively reduces the caching of recent data

and thus serves as an analogous substitution for the respective

bypassing policies. Correspondingly, at the LLVM IR level, the

volatile feature jointly controls the cache behavior of L0 and

L1 on-chip caches, which is equivalent to setting GLC and DLC.

The nontemporal feature affects the L2 off-chip cache, managed
by the SLC bit, and can be overridden by volatile. In summary,
the combinations of the volatile and nontemporal establish two
bypassing modes.

• L2 Bypassing: set the LLVM feature volatile to be false
and nontemporal to be true, corresponding to the second
line of Table 1, which bypasses L2 cache only.

• L0/1 Bypassing: set the LLVM feature volatile to be true,
corresponding to the third and fourth lines of Table 1, by-

passing both L0 and L1 jointly.

2.3 Motivation

Figure 2: The percentage of runtime improvement of 𝑠𝑝𝑚𝑣
for bypassing each load under L2 Bypassingmode and L0/1
Bypassingmode.

We illustrate the varying bypassing affinities for different cache

levels of distinct load instructions using application 𝑠𝑝𝑚𝑣 from
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Parboil Suite [26]. Figure 2 depicts the performance improvement

observed when bypassing each load instruction under two bypass-

ing modes. The application 𝑠𝑝𝑚𝑣 includes 10 global loads in total,
each of which is indexed according to the IR order, denoted as 𝑙𝑜𝑎𝑑𝑖 .
An analysis of bypassing affinity across different cache levels reveals

distinct behaviors for various load instructions. Specifically, 𝑙𝑜𝑎𝑑7
and 𝑙𝑜𝑎𝑑9 have a strong L2 bypassing affinity (25.94% and 24.85%

respectively) but a substantial negative L0/1 bypassing affinity (-

43.58% and -5.72% respectively). In contrast, 𝑙𝑜𝑎𝑑4 demonstrates a
moderate L0/1 bypassing affinity (1.45%), the only positive value

among all loads, but a weaker affinity for L2 bypassing (-3.06%). The

remaining loads exhibit negligible bypassing affinity at both L0/L1

and L2 levels and in some cases (e.g. 𝑙𝑜𝑎𝑑8), bypassing significantly
degrades performance.

The observations highlight the importance of careful decision

when selecting instructions and cache levels for bypassing strate-

gies. Therefore, fine-grained cache control over load instruction for

multiple cache levels is urgently demanded to exploit the diverse

bypassing affinities.

3 MULTI-LEVEL CACHE BYPASSING DESIGN

3.1 Overview

�$�%����&�����	
���'��((�
���������)��)���*�)�

����� ����'��((�
�
����� ������'��((�
�
����� ��	
�
����� ��	
�
����� ����'��((�
�
����� ������'��((�
�
+++

�)������
�
�����
�
%�)�	%��
 ������'��((�
�

�$�%����&�����	
���'��((�
�
�� ���! "�)�*�)�

��

��

��

Figure 3: The proposed Mpache framework overview.

Figure 3 shows the overview of Mpache. At the compilation time,
for load interaction analysis, Mpache first acquires an interaction
graph that decides the loads into several groups. Then, for each

group and each instruction within a group, the framework pro-

files the performance of the program under two bypassing modes

and collects the profiling data for different bypassing affinities in-

vestigation. Finally, Mpache chooses the ideal bypassing mode for
each load instruction, considering the interactions among loads and

bypassing affinities of each load through the bypassing strategy.

3.2 Load Interaction

We construct an interaction graph to divide the load instructions

featuring inter-instruction locality into the same group. As in Figure

4, for a GPU kernel with 𝑁 global loads, we use 𝑙𝑑𝑖 to denote

the 𝑖-th global load in the LLVM IR code order. The presented

approach analyzes the IR code of GPU kernels and constructs a load

graph that involves all the load instructions in this kernel. We first

describe each load instruction as a node in the graph ( 1©). Next,

the approach divides the graph into multiple groups ( 2©), where
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Figure 4: Load interaction graph construction.

each node in a group is referenced to the same array. Subsequently,

the group is further divided into more localized sub-groups ( 3©)

devoid of control flow instructions, such as loops, branches, jumps,

or synchronization primitives. In this example, the load instructions

are partitioned into 7 groups. Finally, we build an interaction graph

𝐺 = (𝑉 , 𝐸) including multiple groups annotated as 𝑔. The node
𝑣𝑖 ∈ 𝑉 represents 𝑙𝑑𝑖 . Nodes 𝑣𝑖 and 𝑣 𝑗 are connected via an indirect
edge if they are in a 𝑔.

Loads within the same group clearly demonstrate notable spatial

and temporal locality, stemming from their shared array references

and execution within uninterrupted basic blocks without control

flows or synchronizations. Nonetheless, contention among these

loads has been observed. When the reuse distances between two

loads are excessively long or their memory footprints do not pre-

cisely align with cache line boundaries, they may share the same

cache line without effectively reusing cached data. This scenario

results in cache line eviction and subsequent refreshes, which ad-

versely affect overall cache performance. Hence, we summarize

the two types of instruction interactions within the same group

𝑔 as follows and simultaneously incorporate both features in the
multi-level cache bypassing strategy in Section 3.3.

• cooperation: the load instructions in the same group reuse

data from each other, so we should set the bypass policy for

them uniformly.

• contention: due to the different reuse distances of the load

instructions in a group, they will also compete for the cache

lines since they may extremely be allocated to the same

cache lines. Hence we should also be concerned about the

single bypass effect within a group.

3.3 Load Bypassing

In this section, we identify the optimal bypass modes for each load

based on bypassing affinities and load interactions. As outlined

in Section 3.2, loads within a group exhibit two interaction types:

cooperation and contention. When cooperation interactions are

dominant, loads within a group tend to have similar access patterns
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and high reuse potential, indicating shared bypassing preferences.

Conversely, if contention prevails, bypass modes should be tailored

for individual loads rather than the group. An edge case may arise

where a group collectively disfavors a bypassing mode, while indi-

vidual loads within it prefer the same mode; here, we balance the

group’s overall impact on each load’s bypass choice.

To represent the bypassing affinity for a specific mode, we calcu-

late its affinity score, noted as 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒 . Equation 1 details this
calculation. For each 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 , we individually bypass them
under a specific mode, recording the 𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 . The affinity
score is then the percentage improvement over the 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑡𝑖𝑚𝑒 ,
where a higher score indicates a stronger affinity for that mode.

𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒 =
(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑡𝑖𝑚𝑒 − 𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑡𝑖𝑚𝑒
∗ 100 (1)

Algorithm 1 outlines the strategy to determine the optimal by-

pass modes for each global load 𝑣 . Here,𝑚𝑜𝑑𝑒𝑠 is a one-dimensional
boolean array where 0 denotes L2 Bypassing and 1 denotes L0/1
Bypassing, extendable for additional modes if supported by hard-
ware. 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 is a two-dimensional array where 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠
(𝑔, 𝑗) gives the affinity score of 𝑔 ∈ 𝐺 under 𝑚𝑜𝑑𝑒𝑠 ( 𝑗). The out-
puts are 𝑛𝑜𝑑𝑒𝑠 , a one-dimensional array indicating the index of
each bypassed 𝑣 ∈ 𝑉 , and 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 , another one-dimensional array
specifying the bypass mode for each corresponding 𝑛𝑜𝑑𝑒 .

Algorithm 1 Load Bypassing Modes Selection Strategy

Input:

𝐺 (𝑉 , 𝐸): the load interaction graph;
𝑚𝑜𝑑𝑒𝑠: an array consisting of [0,1];
𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑔, 𝑗): represents the affinity score of 𝑔 ∈ 𝐺 under

𝑚𝑜𝑑𝑒𝑠 ( 𝑗).
Output:

𝑛𝑜𝑑𝑒𝑠 (𝑖): represents the index of the bypassing 𝑣 ∈ 𝑉 at 𝑖;
𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 (𝑖): represents the bypassing mode of 𝑛𝑜𝑑𝑒𝑠 at 𝑖 .

1: for each 𝑔 ∈ 𝐺 do ⊲ cooperation interaction
2: initialize 𝑐𝑜𝑚𝑏𝑖 (𝑔) to −∞
3: for each𝑚 ∈𝑚𝑜𝑑𝑒𝑠 do ⊲ diverse affinities
4: 𝑐𝑜𝑚 = 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑔,𝑚) −

∑
𝑣∈𝑔 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑣,𝑚)

5: 𝑐𝑜𝑚𝑏𝑖_𝑟𝑒𝑐𝑜𝑟𝑑 (𝑔,𝑚) = 𝑐𝑜𝑚
6: if 𝑐𝑜𝑚 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ1 ∗ 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑔)

↩→ and 𝑐𝑜𝑚 > 𝑐𝑜𝑚𝑏𝑖 (𝑔) then
7: 𝑐𝑜𝑚𝑏𝑖 (𝑔) = 𝑐𝑜𝑚; 𝑛𝑜𝑑𝑒𝑠 ← add each 𝑣 ∈ 𝑔
8: 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ← update mode of each 𝑣 ∈ 𝑔 to𝑚
9: end if

10: end for

11: if 𝑐𝑜𝑚𝑏𝑖 (𝑔) ≠ −∞ then continue end if

12: for each 𝑣 ∈ 𝑔 do ⊲ contention interaction
13: initialize 𝑠𝑐𝑜𝑟𝑒 (𝑣) to −∞
14: for each𝑚 ∈𝑚𝑜𝑑𝑒𝑠 do ⊲ diverse affinities
15: 𝑠𝑐𝑜 = 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒𝑠 (𝑣,𝑚)
16: if 𝑙𝑒𝑛(𝑔) ≠ 1 and 𝑐𝑜𝑚𝑏𝑖 (𝑔,𝑚) ≤ 0 then

17: 𝑠𝑐𝑜 = 𝑠𝑐𝑜 +𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑐𝑜𝑚𝑏𝑖_𝑟𝑒𝑐𝑜𝑟𝑑 (𝑔,𝑚)
18: end if

19: if 𝑠𝑐𝑜 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ2 ∗ 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑣)
↩→ and 𝑠𝑐𝑜 ≥ 𝑠𝑐𝑜𝑟𝑒 (𝑣) then

20: 𝑠𝑐𝑜𝑟𝑒 (𝑣) = 𝑠𝑐𝑜 ; 𝑛𝑜𝑑𝑒𝑠 ← add 𝑣
21: 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ← update mode of 𝑣 to𝑚
22: end if

23: end for

24: end for

25: end for

Table 2: List of evaluated GPU benchmark kernels[26–28].

Kernels abbr. Kernels abbr.

spmv SPV lbm LBM

hybridsort-1 HS1 paticlefilter PAT

hybridsort-2 HS2 dct8x8-1 DT1

convolutionSeparable-1 CS1 dct8x8-2 DT2

convolutionSeparable-2 CS2

For cooperation interaction, each group is treated as a unit. The

algorithm first calculates the group’s combined locality impact,

𝑐𝑜𝑚, under two modes, as shown in line 4. This impact is measured

by subtracting the aggregate individual load affinities from the

group’s bypassing affinity, 𝑎𝑓 𝑓 𝑡_𝑠𝑐𝑜𝑟𝑒 (𝑔,𝑚), for each mode𝑚. A
threshold 𝑡ℎ𝑟𝑒𝑠ℎ1 is then applied to assess the significance of the
group’s locality. If the locality impact exceeds 𝑡ℎ𝑟𝑒𝑠ℎ1 times the
access count of 𝑔, the algorithm selects the higher affinity mode,

adds each 𝑣 ∈ 𝑔 to 𝑛𝑜𝑑𝑒𝑠 , and updates 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 (line 6 ∼ 9).

Under contention interaction, if 𝑐𝑜𝑚𝑏𝑖 (𝑔) is infinite, indicating
insufficient locality in either mode (line 11), the algorithm applies

individual bypass strategies for each 𝑣 in the group (line 12). The
equation in line 17 calculates 𝑣 ’s bypass affinity, weighted by group
affinity using𝑤𝑒𝑖𝑔ℎ𝑡 to moderate extreme aversions. If 𝑣 ’s affinity
score 𝑠𝑐𝑜 exceeds 𝑡ℎ𝑟𝑒𝑠ℎ2 times its access count, 𝑣 is added to 𝑛𝑜𝑑𝑒𝑠 ,
and its 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 mode is updated (line 19 ∼ 22). This produces 𝑛𝑜𝑑𝑒𝑠
and 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 , representing all bypassing 𝑣 ∈ 𝑉 and their modes. For

thresholds, we set 𝑡ℎ𝑟𝑒𝑠ℎ1 at 1.5 for groups and 𝑡ℎ𝑟𝑒𝑠ℎ2 at 1.0 for
individual loads, assuming greater benefits from group bypassing,

and apply a𝑤𝑒𝑖𝑔ℎ𝑡 of 0.1 to balance group impact.

4 EXPERIEMENTAL EVALUATION

For evaluation, we implement Mpache at compile time atop of the
commodity AMD Radeon RX 6900 XT which uses RDNA2 archi-

tecture with GFX1030 ISA. The device contains 32KB per CU L0,

128KB per SA L1, and a 4MB global L2 cache. The proposed Mpache
is implemented as an LLVM pass during compilation and acts as a

transparent middleware between the underlying hardware and the

upper-level users, thus requiring no application code refactoring.

The applications used in the experiment are described in Table 2.

We evaluate and compare the following cache bypassing schemes:

• CacheAll: baseline that defaults to caching all cache levels
per load.

• PassL2 and PassL0/1: bypassing all loads exclusively under
the non-temporal mode and the volatile mode, separately.

• Liang [17]: the state-of-the-art method that implements both
static and dynamic cache bypassing in a simulator. We repro-

duce the method’s static design on readily available GPUs.

• SelectL2 and SelectL0/1: the proposed bypassing strategy
outlined in Section 3.3 involves selecting bypassing loads

exclusively under the L2 Bypassing mode and the L0/1
Bypassing mode separately.

• Mpache: the proposed bypassing framework for selecting

bypassing loads under the combination of two modes.

1212



Mpache: Interaction Aware Multi-level Cache Bypassing on GPUs ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

4.1 Performance Improvement

Figure 5 shows the runtime speedup of all cache management sys-

tems, normalized to the baseline CacheAll. Across benchmarks,
Mpache achieves an average 1.152× speedup over CacheAll, offer-
ing 6% additional performance gains over Liang. This improvement
stems from Mpache’s consideration of load interactions and multi-
level bypassing affinities per load. For workloads like SPV and HS1,

Mpache outperforms Liang by utilizing both L2 Bypassing and
L0/1 Bypassingmodes, whereas Liang only uses L0/1 Bypassing.
Additionally, in workloads such as LBM , DT1, and DT2, Mpache ex-
cels by recognizing cooperation within load groups and bypassing

the entire group under an optimal mode, which Liang lacks by only
handling individual loads.

Bypassing the L0/L1 (PassL0/1) or L2 (PassL2) cache for all
loads results in average performance drops of 0.713× and 0.901×, re-

spectively, due to the elimination of potential data reuse. PassL0/1
benefits applications like LBM , DT1, DT2, and HS2, where loads

are only used once in L0/L1. However, this approach degrades

performance in others, especially in CS1 and CS2. By applying our

instruction-aware single-level strategies, SelectL0/1 and SelectL2,
we achieve moderate average speedups of 1.097× and 1.040×, effec-

tively selecting optimal bypass modes across applications.

Furthermore, the proposed Mpache surpasses conventional single-
level bypassing techniques, SelectL2 and SelectL0/1, by inte-

grating multi-level cache bypassing decisions, achieving optimal

bypassing selection. Mpache identifies load affinities for different
cache bypassing within a kernel and across kernels. Specifically,

for SPV that exhibit affinities for L0, L1, and L2 bypassing, Mpache
determines the optimal strategy that combines the two modes. Con-

versely, for applications like LBM and HS1, which primarily exhibit

either L0/L1 or L2 bypassing affinities individually, Mpache identi-
fies the most suitable strategy for each application.

4.2 Cache Hits

To collect hardware utilization, we leverage the rocm-smi library to

collect metrics from hardware counters. This allows us to monitor

L2 cache hits and validate the effectiveness of our design. Figure 6

illustrates the normalized global L2 cache hits for all cache man-

agement strategies, normalized against CacheAll. Due to space
constraints, the figure presents mean results across all kernels and

highlights representative applications. Our proposed Mpache in-
creases L2 cache hits in SPV , PAT , CS1, CS2, and HS1, whereas

for LBM , DT1, DT2, and HS2, the sum remains the same or indi-

cates a minor decline. This accounts for the bypassing strategy for

LBM , DT1, DT2, and HS2, in which all loads are bypassed for L0

and L1 cache inferring that the cumulative L2 cache hits are not

intrinsically tied to them. Conversely, for SPV , PAT , CS1, CS2, and

HS1, ideal loads for the L0 and L1 cache or L2 cache are partially

bypassed. This effectively reduces contention and frees up cache

space for other loads, thus improving the sum of L2 cache hits to

varying degrees based on the changing affinities for L2.

Among all Cache management, PassL0/1 stands out due to by-
passing all loads for L0/1, which leads to increased memory accesses

to the L2 cache, thus boosting L2 cache hits. Similarly, SelectL0/1
and Liang also show increased L2 hits as they bypass only under

L0/1 Bypassing mode. Contrary to intuition, PassL2 also shows

an increase in L2 hits, despite theoretically bypassing all loads un-

der L2 Bypassing mode. This phenomenon occurs because the

hardware implementation of the L2 cache operates on a streaming

model rather than direct bypassing. For the same reason, SelectL2
gets an increase in L2 hits.

4.3 Sensitivity Studies

There are three primary tuning knobs in Mpache’s design (Section
3.3): the bypassing thresholds 𝑡ℎ𝑟𝑒𝑠ℎ1 and 𝑡ℎ𝑟𝑒𝑠ℎ2, which deter-

mine the selection of group bypassing and load bypassing based

on their bypassing affinity, and𝑤𝑒𝑖𝑔ℎ𝑡 , which captures the impact
of group bypassing affinity on individual loads within the group.

Figure 7(a) presents the average performance achieved by all ap-

plications as 𝑡ℎ𝑟𝑒𝑠ℎ1 and 𝑡ℎ𝑟𝑒𝑠ℎ2 vary from 1.0 to 2.0. It is evident

that from 1.0 to approximately 1.5, the performance exhibits mi-

nor variations, indicating stability for both 𝑡ℎ𝑟𝑒𝑠ℎ1 and 𝑡ℎ𝑟𝑒𝑠ℎ2.
However, performance degradation becomes noticeable for 𝑡ℎ𝑟𝑒𝑠ℎ1
around 1.6 and diminishes near 1.8. Similarly, for 𝑡ℎ𝑟𝑒𝑠ℎ2, perfor-
mance begins to decline around 1.8 and stabilizes near 2.0. This

highlights that the group bypassing threshold demonstrates greater

robustness compared to the load bypassing threshold.

Figure 7(b) illustrates the average speedup variation as𝑤𝑒𝑖𝑔ℎ𝑡
ranges from 0.0 to 0.5. It can be observed that from 0.1 to 0.5, the

performance remains stable, indicating the robustness of our design.

However, when𝑤𝑒𝑖𝑔ℎ𝑡 is set to zero, there is a noticeable decline in
performance. This occurs because the influence of group affinity on

load instructions within a group becomes negligible. Specifically, for

applications like CS1 and CS2, certain groups strongly dislike L0/1
Bypassing while the load instructions within these groups exhibit
a strong affinity. This exceptional case aligns with the discussion

presented in Section 3.3. Therefore, setting 𝑤𝑒𝑖𝑔ℎ𝑡 greater than
zero is essential to uphold the integrity of our design and facilitate

performance optimization.

5 DISCUSSION

Current LLVM IR features lack comprehensive support for by-

passing all cache levels (L0, L1, and L2). Consequently, due to the

software-controlled mechanism, we are currently unable to observe

its effects. Nevertheless, should this feature become accessible, the

multi-level bypassing strategy outlined in Section 3.3 can seamlessly

accommodate any number of mode selections without necessitating

modifications.

We implement Mpache on AMD’s platform since the cache an-

notation bits have been experimentally verified to be effective,

but it is also feasible on the popular NVIDIA’s products. NVIDIA

exposes the cache management mechanisms to annotate PTX in-

structions, but these annotations are only treated as performance

hints [29]. ld.global.ca sets the default cache policy for L1 and L2

caches, ld.global.cg is used specifically to bypass the L1 cache, while

ld.global.cs is designed for bypassing both the L1 and L2 caches.

Cache bypassing can be facilitated through PTX annotations, pro-

vided their effects are established. Consequently, based on these

cache operators, Mpache can also be deployed at the PTX level on

Nvidia’s platform during compile time.
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Figure 5: The speedup comparison of all the cachemanagement systems which includes bypassing all loads only in L2 Bypassing
(PassL2) or L0/1 Bypassing (PassL0/1), Liang [17], selective load bypassing strategies as detailed in Section 3.3 only under L2
Bypassing (SelectL2) or L0/1 Bypassing (SelectL0/1), and Mpache, normalized to CacheAll.

Figure 6: The global L2 cache hits comparison of all the cache

management normalized to CacheAll, displaying mean re-

sults across all kernels and selected representative kernels.

(a) Bypassing thresholds 𝑡ℎ𝑟𝑒𝑠ℎ. (b) Group impact 𝑤𝑒𝑖𝑔ℎ𝑡 .

Figure 7: The average speedup of different thresholds and

weights parameters.

6 RELATEDWORK

Instruction-based bypassing. It performs bypassing based on

analyzing the per-load instruction, which concentrates on code

characteristics and is typically examined during compilation. Jia

[4] determined whether the cache is on or off through the memory

traffic of each load instruction. Xie [20] and Liang [17] encoded

the classification into instructions at compiler time while adjusting

the ratio of thread blocks. Fang [16] considered the use of different

types of locality for load instructions. Those prior arts neglected

the L2 cache and only focused on the L1 cache bypassing. Whereas

working at the instruction level, this paper combines all cache levels

and designs an effective strategy at compiler time.

Thread throttling bypassing. Enforcing the number of threads

or warps that some threads access the cache but others bypass signif-

icantly mitigates the pressure on the cache. There are some studies

made efforts into it. Li [15] added a threshold during compilation so

that only a limited number of threads based on warp could access

the cache for L1, L2, and read-only caches. Jadidi [13] presented

selective caching mechanisms regulating the number of threads to

both the L1 and L2 caches.

Memory request bypassing. Memory request level bypassing

triggers bypassing when cache associativity stall is encountered.

The orchestrated hardware modifications are often used together

with cache bypassing revised design. Recent works have been de-

voted to memory access request-based bypassing. Kim [8] intro-

duced a new two-level bypassing method determining cache access

based on two metrics. Do [7] proposed the warp classification and

the request bypassing structure to mitigate the GPU cache con-

tention.

7 CONCLUSION

This paper highlights the diverse bypass affinity demonstrated by

various memory load instructions and proposes Mpache to bypass
multi-level caches on off-the-shelf GPUs. Mpache analyzes the inter-
action between instructions and strategically selects the cache level

to bypass for each load. Moreover, Mpache is integrated into the
compiler framework to facilitate automatic cache bypassing opti-

mization. Experimental evaluations show that Mpache outperforms
the default cache policy by 1.15×.
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