AUTOSCRATCH: ML-OPTIMIZED CACHE MANAGEMENT FOR
INFERENCE-ORIENTED GPUS

Yaosheng Fu' Evgeny Bolotin! Aamer Jaleel' Gal Dalal! Shie Mannor' Jacob Subag' Noam Korem '
Michael Behar' David Nellans '

Proceedings of the 6th MLSys Conference

INVIDIA.

BACKGROUND Device Memory L2 Access Management Introduced by Ampere

L2 cache Access policy window
GPU Set aside for persisting
i . Base ptr
1t | v
hitRatio| hitProp | missProp global memory
Memory persisting [streaming} L y
l" > T
streaming|persisting| normal num_bytes

data access pattern
L2 access management

) ‘/"
Configure 1.2 cache
Basic workflow of L2~ Launch
access management Configure access Kernel
policy window)

https://docs.nvidia.cn/cuda/cuda-c-programming-guide/index.html#device-memory-I2-access-management

INTRODUCTION

bottleneck

_ FP16 throughput improvement DRAM bandwidth improvement

V100 (5)4 0.25x

A100 2.6x 0.72x

4

Power consumption for HBM :
40 watts per 1TB/s bandwidth

1000

LLC Capacity (MB)

100
10
Reduce DRAM traffic <= Increase SRAM caches J I I
S & & 2 B

|
‘ Q
Q
RN NP

.
Hardware managed VS Software managed PR A

‘ DL training and inference DL inference

Programmer intuition VS Automatically discovers and optimizes

MOTIVATION

40
A Act §35
ct. . ct. :
. 2 - =
L2 i Weights 2 2.3 Weig 3 30
@ 25
=
DRAM < Act.) " Act. : - =)
Weights 1 12 Weights 2 7>3 Weights 3 4§ 20
(a) Typically both activations and weights end up shuffling be- g 15
tween L2 cache and DRAM in hardware-managed caches result- s
ing in cache interference. §. 10
=
B 111111111111
0
0 3 10

15 20 25 30 35 40 45 50

I Weights | Layer Index

Act. :
s 2
1>2 Weights 2

DRAM

(b) Ideal reuse of L2 cache capacity results in cache resident Fi gure 3. The per-layer activation sizes for int8 datatype in
aelivdtigis, WiHly We NG g SRS DN, Rt resnet50 inference, with a batch size of 48. The largest per-layer

are not shared between layers.
activation size is less than 37MB.

Figure 2. The memory access pattern for common DL inference
workloads illustrating differing reuse patterns for weights and
activations.

AUTOSCRATCH FRAMEWORK

L2-resident

Sharad ——

L2-resident

Activation
L2-resident
Bufter

L2-resident

Figure 4. L2 residency selections within the shared activation
buffer.

AutoScratch
compatible

AutoScratch’s

Unoptimized

>

ML-based
optimization

inference app

inference app

TensorRT
compilation

Deployment
L Learned L2
residency configuration

L2-resident |
o
L2-resident |

Shared activation buffer

Figure 5. The high-level architecture and optimization flow of Au-
toScratch.

AUTOSCRATCH FRAMEWORK

Environment

DL inference app
running on GPU

Reward(r)=
Perf. improvement

0 0
[.2-resident BN — A | Promotion
| |9] 1| actions
L.2-resident 3 [k. ./ N 0
Shared activation ~— No action
buffer :
State: Vector (s,) Action: One-hot vector (a,)

Figure 6. The AutoScratch-RL optimization framework for tuning
GPU’s L2 residency configuration.

M
L
Initialization: % E L2-resident
Generate M random L2 residency " I bad 1) |
configuration vectors Kl BB] L2-resident

Shared activation

; h buffer

Evaluation and Selection: Mutation:
Select best performing vector from a Create and insert a new child,
random subset (S) of the population remove oldest

Termination: Main loop: repeat K steps
Terminate after K steps, choose best

overall configuration

Figure 7. AutoScratch-EA with regularized evolutionary optimiza-
tion for tuning GPU’s L2 residency configuration.

EVAL UATI ON B Baseline WR BAS-RLWR OAS-EA WR

m Baseline RD B AS-RL RD OAS-EARD

Table 1. MLPerf inference benchmark settings in AutoScratch.

Normalized DRAM Traffic
cocococoocooco—~
O~ MNWRARULIONJOOO O

BENCHMARK PRECISION BATCH ACTIVATION BUFFER &
SIZE SIZE (MB)
RESNETS50 INT8 32 63 (2) Offchip DRAM Traffic
SSD-RESNET34 INT8 6 104
SSD-MOBILENET INTS8 64 140 mAS-RL DAS-EA
3D-UNET INTS 1 278 o
BERT INTS8 32 81 1.2 N —
DLRM INT8 51200 106 511 »
RNNT FP16 2048 4175 -
0.9 |—

(b) Performance Speedup

THANKS & QA

