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BACKGROUND Device Memory L2 Access Management Introduced by Ampere
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https://docs.nvidia.cn/cuda/cuda-c-programming-guide/index.html#device-memory-I2-access-management



INTRODUCTION
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MOTIVATION
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Figure 2. The memory access pattern for common DL inference
workloads illustrating differing reuse patterns for weights and
activations.



AUTOSCRATCH FRAMEWORK
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Figure 4. L2 residency selections within the shared activation
buffer.
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Figure 5. The high-level architecture and optimization flow of Au-
toScratch.



AUTOSCRATCH FRAMEWORK
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Figure 6. The AutoScratch-RL optimization framework for tuning
GPU’s L2 residency configuration.
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Figure 7. AutoScratch-EA with regularized evolutionary optimiza-
tion for tuning GPU’s L2 residency configuration.



EVAL UATI ON B Baseline WR BAS-RLWR  OAS-EA WR

m Baseline RD B AS-RL RD OAS-EARD

Table 1. MLPerf inference benchmark settings in AutoScratch.

Normalized DRAM Traffic
cocococoocooco—~
O~ MNWRARULIONJOOO O

BENCHMARK PRECISION BATCH ACTIVATION BUFFER &
SIZE SIZE (MB)
RESNETS50 INT8 32 63 (2) Offchip DRAM Traffic
SSD-RESNET34 INT8 6 104
SSD-MOBILENET INTS8 64 140 mAS-RL DAS-EA
3D-UNET INTS 1 278 o
BERT INTS8 32 81 1.2 N —
DLRM INT8 51200 106 511 »
RNNT FP16 2048 4175 -
0.9 |—

(b) Performance Speedup



THANKS & QA



