24春学期总结汇报

郭天宇

- □ 时间 2024.1-6 地点 深圳
 - ▶解锁新的人生副本:一个人前往陌生的城市租房住

- □ 时间 2024.1-6 地点 深圳
 - ▶解锁新的人生副本:一个人前往陌生的城市租房住
- □ 深圳是一个生活节奏很快的城市
 - ▶ 路上行人脚步很快,人行道的非机动车很快,日常的消费也很快

- □ 时间 2024.1-6 地点 深圳
 - ▶解锁新的人生副本:一个人前往陌生的城市租房住
- □ 深圳是一个生活节奏很快的城市
 - ▶ 路上行人脚步很快,人行道的非机动车很快,日常的消费也很快
- □ 腾讯是一家很成熟的互联网企业
 - ▶ 入职培训(高压线),组织架构,规范流程,工作环境

- □ 时间 2024.1-6 地点 深圳
 - ▶解锁新的人生副本:一个人前往陌生的城市租房住
- □深圳是一个生活节奏很快的城市
 - ▶ 路上行人脚步很快,人行道的非机动车很快,日常的消费也很快
- □腾讯是一家很成熟的互联网企业
 - ▶ 入职培训(高压线),组织架构,规范流程,工作环境
- □不同年龄段的人关注点相差很大
 - ▶ 买房,结婚,带娃

- □ 时间 2024.1-6 地点 深圳
 - ▶解锁新的人生副本:一个人前往陌生的城市租房住
- □ 深圳是一个生活节奏很快的城市
 - ▶ 路上行人脚步很快,人行道的非机动车很快,日常的消费也很快
- □腾讯是一家很成熟的互联网企业
 - ▶ 入职培训(高压线),组织架构,规范流程,工作环境
- □不同年龄段的人关注点相差很大
 - ▶ 买房, 结婚, 带娃
- □学习收获
 - > 入门大语言模型推理

Overhead of CPU operations

☐ Current LLM inference framework expect to **maximize** the utilization of GPU

Overhead of CPU operations

- Current LLM inference framework expect to **maximize** the utilization of GPU
- □ Overhead of operations on CPU like schedule and output process are nonneglectable
- ☐ About 25% of the time is spent on CPU operations

gLLM

Overhead of CPU operations

- ☐ Current LLM inference framework expect to **maximize** the utilization of GPU
- Overhead of operations on CPU like schedule and output process are nonneglectable
- ☐ About 25% of the time is spent on CPU operations
- Reduce overhead of CPU opearations can improve performance

Pipeline Schedule

■ Baseline schedule will **serialize** the execution of schedule, model forward and output process

Baseline Schedule

Pipeline Schedule

- Baseline schedule will **serialize** the execution of schedule, model forward and output process
- Motivated by pipeline parallelism, pipeline schedule is introduced to **overlap** the execution between model forward and other procedure

Problems in Pipeline Schedule

- ☐ Simultaneously schedule 2 batches of requests that can be processed by GPU
 - > prefill-prefill, prefill-decode, decode-decode

Problems in Pipeline Schedule

- Simultaneously schedule 2 batches of requests that can be processed by GPU
 - > prefill-prefill, prefill-decode, decode-decode
- ☐ Careful orchestration addresses **dependencies** between execution phases
 - > schedule => model forward => output process => schedule

Problems in Pipeline Schedule

- Simultaneously schedule 2 batches of requests that can be processed by GPU
 - > prefill-prefill, prefill-decode, decode-decode
- ☐ Careful orchestration addresses **dependencies** between execution phases
 - > schedule => model forward => output process => schedule
- ☐ Launch multi-process to implement execution overlaps
 - ➤ Master process: schedule and output process
 - Worker process: model forward

- ☐ There are three types of simultaneously batching
 - > prefill-prefill
 - > prefill-decode
 - > decode-decode

- ☐ There are three types of simultaneously batching
 - > prefill-prefill
 - > prefill-decode
 - > decode-decode
- ☐ As the prefill only relys on wait queue, prefill-prefill and prefill-decode acts like serial schedule

- ☐ There are three types of simultaneously batching
 - > prefill-prefill
 - > prefill-decode
 - > decode-decode
- As the prefill only relys on wait queue, prefill-prefill and prefill-decode acts like serial schedule

☐ Decode-decode may exhibit unbalanced batching: one schedule 225 seqs and the other schedule 31 seqs

- ☐ There are three types of simultaneously batching
 - > prefill-prefill
 - > prefill-decode
 - > decode-decode
- ☐ As the prefill only relys on wait queue, prefill-prefill and prefill-decode acts like serial schedule

- Decode-decode may exhibit unbalanced batching: one schedule 225 seqs and the other schedule 31 seqs
- □ Delay scheduling is proposed to merge two unbalanced schedule

Dependency Control

- We can use three queues to control dependency
 - Schedule outputs
 - > Run outputs
 - > Control schedule

Dependency Control

- We can use three queues to control dependency
 - > Schedule outputs
 - > Run outputs
 - > Control schedule
- Each module get an element from the queue

Dependency Control

- We can use three queues to control dependency
 - Schedule outputs
 - > Run outputs
 - > Control schedule
- Each module get an element from the queue
- ☐ The module is blocked when there isn't any element in the queue

Multi-process

- Master process
 - ➤ Generate schedule outputs
 - Process model outputs

Multi-process

- Master process
 - ➢ Generate schedule outputs
 - Process model outputs
- Worker process
 - Generate model outputs

Multi-process

- Master process
 - ➢ Generate schedule outputs
 - > Process model outputs
- Worker process
 - ➤ Generate model outputs
- Inter-process communication
 - > Schedule outputs
 - Model outputs

Evaulated Result

- We implement pipeline schedule in gLLM
- We use shareGPT to benchmark online serving performance between vLLM, gLLM w/o pipeline schedule and gLLM on L20

