learn-cutlass-5

Cutlass use abstract layout to express the mapping rules from logic index to physical index.

Affine2

18_amphere_fp64_tensorop_affine2_gemm

Affine2 is a speical layout in cutlass.

In the normal GEMM, the fast changing dimension of a matrix always has stride
equals to 1, e.g. ColumnMajor and RowMajor matrix. Affine2 matrix can have
larger than 1 stride in both dimensions. To support such layout, we need to
change to method to visit the global memory:

  1. We can only visit 1 element a time because elements are not stored
    consecutively anymore. Vectorized load/store is not possible.
  2. One extra multiplication is needed in calculating the global memory
    address
    addr = base_pointer + coord1 * stride1 + coord2 * stride2

The explanation is a little abstract, let’s create an example to illustrate it.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#include <iostream>

#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"

using ElementInputA = double; // Data type of elements in input tensor

using LayoutInputA = cutlass::layout::AffineRank2ColumnMajor;

int main() {

// Construct Gemm ProblemSize with user defined output size
cutlass::gemm::GemmCoord problem_size = {4, 4, 4};

typename LayoutInputA::Stride::Index stride_factor_A[] = {2, 2};

// Initialize tensors using CUTLASS helper functions
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(problem_size.mk(),
cutlass::layout::Affine2Layout_Factory<LayoutInputA>::layout_factory(problem_size.mk(),
stride_factor_A));

// Fill input and output matrices on host using CUTLASS helper functions
cutlass::reference::host::TensorFillRandomUniform(
tensor_a.host_view(),
1,
ElementInputA(100),
ElementInputA(-100),
0); // <- Fill matrix A on host with uniform-distribution random data

std::cout << tensor_a.host_view() << "\n\n";
std::cout << tensor_a.capacity() << "\n";
ElementInputA *a = tensor_a.host_data();
for(int i=0;i<tensor_a.capacity();i++){
std::cout << a[i] << ' ';
}
std::cout << '\n';
}

And the output should be

1
2
3
4
5
6
7
68, -21, 56, 59,
82, -60, -32, 53,
-44, 10, -4, 25,
-27, 2, 90, 83

64
68 0 82 0 -44 0 -27 0 0 0 0 0 0 0 0 0 -21 0 -60 0 10 0 2 0 0 0 0 0 0 0 0 0 56 0 -32 0 -4 0 90 0 0 0 0 0 0 0 0 0 59 0 53 0 25 0 83 0 0 0 0 0 0 0 0 0

So affine2 is a layout that builds a submatrix through extracting original matrix based on the given stride.

Quaternion

21_quaternion_gemm

Quaternion is an interesting concept mostly used in computer graphics. In my opinion, it can be seen as analogy to complex number.
The detailed information about quaternion can be found here.

Author

TianYu GUO

Posted on

2023-05-14

Updated on

2024-10-28

Licensed under

Comments